method to compress the image. Huffman is a method that makes a three
keywords where each keyword has a value that have less weight than the
one that is replaced, and as you get more large the three the high
frequencies are more weight than the ones with high frequencies.
Below we can see an example of how does it work.

In the program that I made you need to put a keyword "comprimir" to
select that you wanna compress a file or "descomprimir" to select that
you wanna descompress a file, after you press enter you are gonna put
you're file name once that you put it, the compression or
decompression begins.

When you compress a file with my program you are gonna see in the
terminal a dictionary of frequencies of the values followed by a
binary file created with the Huffman's algorithm and then the time
of execution.
The flow for compress is the next one:

And the flow for decompress is the follow one:

All this happen using the pixel value of each coordinate of the image,
and then using the flow that I mencioned before we can get the image
compressed or decompress (once is compressed).
A good way to examine the performance is saving the time of execution
and the size of the file that print out my program. To see how the performance
is going I recommend a linear graph.
The program just is working for compression, I had problems to decompress
the file but the logic pretty much the same as previous programs that I made
about using Huffman's algorithm.
This is the code that I made:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time, pickle, codecs | |
import numpy as np | |
import Tkinter | |
from PIL import ImageDraw | |
import Image | |
import ImageTk | |
from os import stat | |
from sys import argv | |
class Node: | |
def __init__(self, symbol, nodeLeft, nodeRight, frequency): | |
self.label = '' | |
self.symbol = symbol | |
self.nodeLeft = nodeLeft | |
self.nodeRight = nodeRight | |
self.frequency = frequency | |
return | |
def __repr__(self): | |
return '( %s ) [%s] %d' % (self.label, str(self.symbol), self.frequency) | |
def name(self, prefix): | |
self.label = prefix | |
if self.nodeLeft is not None: | |
self.nodeLeft.name('%s1' % self.label) | |
if self.nodeRight is not None: | |
self.nodeRight.name('%s0' % self.label) | |
return | |
def decode(self, binary): | |
if self.symbol is not None: | |
return (self.symbol, binary) | |
else: | |
assert(self.nodeLeft is not None) | |
assert(self.nodeRight is not None) | |
bit = binary[0] | |
binary = binary[1:] | |
if bit == '1': | |
return self.nodeLeft.decode(binary) | |
elif bit == '0': | |
return self.nodeRight.decode(binary) | |
else: | |
print 'Something is wrong.' | |
return | |
def insert(self, dictionary): | |
if self.nodeLeft is not None: | |
self.nodeLeft.insert(dictionary) | |
if self.nodeRight is not None: | |
self.nodeRight.insert(dictionary) | |
if self.symbol is not None: | |
dictionary[self.symbol] = self.label | |
return | |
def main(): | |
#Ask for your selection compress or decompress or cancel | |
opcion = raw_input("--> Desea comprimir o descomprimir? comprimir / descomprimir / cancelar (cancel) >") | |
#Ask for your file to compress or decompress | |
nombre_de_archivo = raw_input("--> Ingrese el nombre del archivo >") | |
if opcion == "comprimir": | |
#open the image | |
archivo = Image.open(nombre_de_archivo) | |
#we work with gray scale | |
archivo = archivo.convert('L') | |
#extract the matrix of the file | |
matriz = np.array(archivo) | |
#get the size | |
renglones, columnas = matriz.shape | |
#DEBUG | |
print renglones, columnas | |
#create a dictionary | |
pixeles = dict() | |
#iterate the matrix | |
for r in xrange(renglones): | |
for c in xrange(columnas): | |
#debug | |
print matriz[r,c] | |
#save the frequencies of each pixel value | |
if matriz[r,c] in pixeles.keys(): | |
pixeles[matriz[r,c]] += 1 | |
else: | |
pixeles[matriz[r,c]] = 1 | |
print pixeles | |
#create a node that will represent a three | |
node_list = list() | |
for p in pixeles.keys(): | |
#save each pixel and his value as a node of the three | |
node_list.append(Node(p, None, None, pixeles[p] )) | |
#order the three by using as a reference the frequency | |
while len(node_list) > 1: | |
node_list.sort(key=lambda n: n.frequency) | |
min1 = node_list.pop(0) | |
min2 = node_list.pop(0) | |
node_list.append(Node(None, min1, min2, min1.frequency + min2.frequency)) | |
#remove a node empty | |
root = node_list.pop(0) | |
root.name('') | |
code = dict() | |
#extract the three in a dictionary | |
root.insert(code) | |
#sabe the object of the three | |
archivo_del_objeto = open('%s.objeto'%(nombre_de_archivo),'w') | |
pickle.dump(root, archivo_del_objeto) | |
archivo_del_objeto.close() | |
#Create a binary content by using the three | |
binary = '' | |
for s in pixeles: | |
binary = '%s%s' % (binary, code[s]) | |
print binary | |
binary = binary[1:] | |
#save the content binary | |
nuevo_archivo = open("%s.compress"%(nombre_de_archivo),'w') | |
nuevo_archivo.write(binary) | |
nuevo_archivo.close() | |
print binary | |
statusFile = stat(nombre_de_archivo) | |
#we print out the time and size of the file | |
print "time: %s size: %s"%(time.clock(),statusFile.st_size) | |
archivo_del_objeto.close() | |
elif opcion == "descomprimir": | |
#open the file object | |
archivo_del_objeto = open('%s.objeto'%(nombre_de_archivo),'r') | |
root = pickle.load(archivo_del_objeto) | |
archivo_del_objeto.close() | |
#create a dictionary | |
code = dict() | |
#extract all the references of the three | |
root.insert(code) | |
#open the file comprress | |
nuevo_archivo = open("%s.compress"%(nombre_de_archivo),'r') | |
binary = nuevo_archivo.read() | |
nuevo_archivo.close() | |
print binary | |
recovered = '' | |
#recurvibly decode the content compress by | |
#usign the object extracted before | |
while len(binary) > 0: | |
(symbol, binary) = root.decode(binary) | |
recovered = '%s,%s' % (recovered, symbol) | |
#create a new file in gray scale | |
archivo = Image.open(nombre_de_archivo) | |
archivo = archivo.convert('L') | |
matriz = np.array(archivo) | |
print matriz.shape | |
renglones, columnas = matriz.shape | |
new_img = Image.new(mode='L', size=(columnas, renglones)) | |
img = new_img.load() | |
#split all the values | |
recovered = recovered.split(',') | |
recovered = recovered[1:] | |
print len(recovered) | |
print recovered | |
#iterate the image | |
for r in xrange(renglones): | |
for c in xrange(columnas): | |
#we pute the value of the pixel recovered | |
img[r, c] = int(recovered.pop(0)) | |
img = Image.fromarray(np.array(new_img)) | |
#save the image | |
img.save('%s.decompress.png'%(nombre_de_archivo)) | |
elif opcion == "cancelar": | |
print "--> BYE." | |
main() |