Una vez obtenidos los grupos se rotan las líneas generadas hacía la dirección del gradiente por cada grupo que exista. En sí simplemente se agregaron unas pequeñas líneas de código para agregar generar una lista con los datos obtenidos.
Código.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import operator | |
import numpy as np | |
import random | |
from math import atan2, sin, cos, pi, sqrt | |
import Tkinter | |
from PIL import ImageDraw | |
import Image | |
import ImageTk | |
from sys import argv | |
import time | |
def convolucion(imagen, h): | |
iwidth, iheight = imagen.size | |
imagen = imagen.convert('L') | |
im = imagen.load() | |
mheight, mwidth = h.shape | |
print "Imagen size: ",imagen.size | |
print "H: ",h.shape | |
g = np.zeros(shape=(iheight, iwidth)) | |
for x in xrange(iheight): | |
for y in xrange(iwidth): | |
sum = 0.0 | |
for j in xrange(mheight): | |
zj = ( j - ( mheight / 2 ) ) | |
for i in xrange(mwidth): | |
zi = ( i - ( mwidth / 2 ) ) | |
try: | |
sum += im[y + zi, x + zj] * h[i,j] | |
except: | |
pass | |
print x, y | |
g[x,y] = sum | |
print "Convolucion" | |
print g | |
return g | |
def filtro(original): | |
width, height = original.size | |
print width, height | |
original = original.convert('L') | |
modificado = Image.new(mode='L', size =(width,height)) | |
org = original.load() | |
mod = modificado.load() | |
contador = 0 | |
min = 0 | |
max = 0 | |
for y in xrange(height): | |
for x in xrange(width): | |
pixel = org[x,y] | |
if min >= pixel: | |
min = pixel | |
if max <= pixel: | |
max = pixel | |
print "MAX:",max," MIN:",min | |
for y in xrange(height): | |
for x in xrange(width): | |
pixel = org[x,y] | |
try: | |
pixel += org[x-1,y] | |
contador+=1 | |
except: | |
None | |
try: | |
pixel += org[x+1,y] | |
contador+=1 | |
except: | |
None | |
try: | |
pixel += org[x,y+1] | |
contador+=1 | |
except: | |
None | |
try: | |
pixel += org[x,y-1] | |
contador+=1 | |
except: | |
None | |
promedio = (pixel) / (contador) | |
r = max - min | |
prop = 256.0 / r | |
p = int((promedio -min) * prop) | |
if p <= 90: | |
mod[x,y] = 0 | |
else: | |
mod[x,y] = 255 | |
print mod[x,y] | |
print x,y | |
contador = 1 | |
pixel = 0 | |
data = np.array(modificado) | |
print data | |
print data.shape | |
im = Image.fromarray(data) | |
return im | |
def filtroPorNumeros(im,n): | |
for x in xrange(n): | |
im = filtro(im) | |
return im | |
def escalaDeGrises(im): | |
width, height = im.size | |
print width, height | |
im = im.convert('RGB') | |
pix = im.load() | |
promedio = 0.0 | |
for y in xrange(height): | |
for x in xrange(width): | |
r, g, b = pix[x, y] | |
promedio = (r+g+b)/3.0 | |
pix[x, y] = int(promedio), int(promedio), int(promedio) | |
data = np.array(im) | |
im2 = Image.fromarray(data) | |
return im2 | |
def nuevaImagen(matriz): | |
height, width = matriz.shape | |
print matriz.shape | |
imagen = Image.new(mode='L', size =(width,height)) | |
im = imagen.load() | |
print imagen.size | |
for x in xrange(height): | |
for y in xrange(width): | |
im[y, x] = matriz[x, y] | |
data = np.array(imagen) | |
print data | |
im = Image.fromarray(data) | |
return im | |
def binarizacion(imagen): | |
width, height = imagen.size | |
imagen = imagen.convert('L') | |
im = imagen.load() | |
for x in xrange(height): | |
for y in xrange(width): | |
pixel = im[y, x] | |
if pixel < 3: | |
im[y, x] = 0 | |
else: | |
im[y, x] = 255 | |
data = np.array(imagen) | |
im = Image.fromarray(data) | |
return im | |
def deteccionLinea(g, gx, gy, imagen, prop): | |
width, height = imagen.size | |
imagen = imagen.convert('RGB') | |
im = imagen.load() | |
freq = dict() | |
a = list() | |
for x in xrange(height): | |
for y in xrange(width): | |
print "Este es x: ",x," este es y: ",y | |
theta = atan2(gx[x,y],gy[x,y]) | |
g = sqrt(gx[x, y]**2 + gy[x, y]**2) | |
print "G:",g | |
if g > 0 or g < -0.000001: | |
a.append((x,y,theta)) | |
print "Valor gx[%s,%s] : %s"%( x, y, gx[x,y]) | |
print "Valor gy[%s,%s] : %s"%( x, y, gy[x,y]) | |
p = ( x * cos( theta ) ) + ( y * sin( theta ) ) | |
key = "%.2f %.0f"%(theta, p) | |
print "theta: ",theta," p: ",p | |
if key in freq: | |
freq["%.2f %.0f"%(theta, p)] += 1 | |
else: | |
freq["%.2f %.0f"%(theta, p)] = 1 | |
freq_f = dict() | |
freq = sorted(freq.iteritems(), key=operator.itemgetter(1)) | |
print freq | |
print freq[0][0] | |
print freq[0][1] | |
k = int(len(freq) * prop) | |
for f in freq: | |
if len(freq_f) <= k: | |
freq_f[f[0]] = f[1] | |
for x in xrange(height): | |
for y in xrange(width): | |
theta = atan2(gy[x,y],gx[x,y]) | |
p = ( x * cos( theta ) ) + ( y * sin( theta ) ) | |
key = "%.2f %.0f"%(theta, p) | |
if key in freq_f: | |
im[y, x] = 0,255,0 | |
print "gx: ",gx.shape | |
print "gx matriz: ",gx | |
print "gy: ",gy.shape | |
print "gy matriz: ",gy | |
print "Frecuencias: ",sorted(freq_f.iteritems(), key=operator.itemgetter(1)) | |
data = np.array(imagen) | |
im = Image.fromarray(data) | |
return im, a | |
def main(): | |
imagen = Image.open(argv[1]) | |
original = imagen | |
escalaGrises = escalaDeGrises(imagen) | |
px = np.array([[-1,0,1], [-1,0,1], [-1,0,1]]) | |
py = np.array([[1,1,1], [0,0,0], [-1,-1,-1]]) | |
t1 = time.time() | |
gx = convolucion(escalaGrises, px) | |
gy = convolucion(escalaGrises, py) | |
gx_2 = gx ** 2 | |
gy_2 = gy ** 2 | |
g = (gx_2 + gy_2 ) ** 1.0/2.0 | |
print g | |
min = np.min(g) | |
max = np.max(g) | |
h, w = g.shape | |
minimos = np.ones(shape=(h, w)) | |
minimos *= min | |
g = g - min | |
print "Restando el minimo", g | |
g = g / (max - min) | |
print "Dividiendo el max-min",g | |
print "Max: ",np.max(g)," Min: ",np.min(g) | |
bn = np.ones(shape=(h, w)) | |
bn *= 255 | |
g = g * bn | |
print "Max: ",np.max(g)," Min: ",np.min(g) | |
imagen_nueva = nuevaImagen(g) | |
#imagen_binaria = binarizacion(imagen_nueva) | |
imagen_lineas, a = deteccionLinea(g, gx, gy, imagen_nueva, float(argv[2])) | |
print "lista : ",a | |
root = Tkinter.Tk() | |
tkimageLineas = ImageTk.PhotoImage(imagen_lineas) | |
Tkinter.Label(root, image = tkimageLineas).pack(side="left") | |
#Tkinter.Label(root, image = tkimageConvexHull).pack(side="top") | |
t2 =time.time() | |
print "Tiempo total: ",t2-t1 | |
root.mainloop() | |
main() |
Prueba.
No llegas hasta la identificación de segmentos individuales, pero por el avance parcial, van 3 pts.
ResponderEliminar